Zima Blue by Alastair Reynolds versus Zima Blue from Love, Death & Robots

I’ve been on a bit of an Alastair Reynolds kick lately, mainly centered on the author’s revelation space books. As usual, whenever I get invested in a new series, I seek out more in search of more doses of dopamine, which led me to purchase a collection of short stories that Reynolds has written over the years. This endless search for dopamine brought me back to one of my favorite Netflix originals; Love, Death & Robots.

Love, Death & Robots is a Netflix original series consisting of short episodes that bring science fiction short stories to life. Alistair Reynolds had two stories featured in the first season, one of them being Zima Blue.

The story is about a cyborg artist in the far future named Zima. It is told from the perspective of a journalist who has finally been granted an interview with the reclusive artist on the eve of the unveiling of his final work. Zima, we are told, began his work in painting portraits of the cosmos before graduating to increasingly abstract works featuring his trademark blue color, works so large that a single mural could encapsulate a planet. But the story is not so much about Zima’s art as it is Zima’s search for his truth, and in the written version, it is also about how Zima inspires the journalist to search for her own truth.

Both versions of the story are good. Netflix’s version portrays Zima’s story in a much clearer fashion than Reynolds did. However, I can’t help but feel that the story’s message is lost in the retelling. The story is not just about Zima’s search for truth; it is also about his interviewing coming to grapple with what the truth is. Zima, for example, asserts that the falsehoods created by our imperfect memories are what allow truth to come about. Truth in art anyway.

Both versions of the story are great, and I recommend both. Both make the audience ask questions, but I recommend reading the original for a complete formulation of that question.

Revelation Space by Alastair Reynolds

Revelation Space (The Inhibitor Trilogy Book 1) by [Alastair Reynolds]
Book One of the Inhibitor Trilogy

Lately, I have been listening to a lot of audiobooks. It’s helped to make tedious tasks more enjoyable, and it has helped me cross A LOT of books off of my to-be-read list. A few of these books have been Alastair Reynolds’ Inhibitor Trilogy. These books have me obsessed.

For those who don’t know, Alastair Reynolds is a prolific science fiction author who studied astrophysics with the European Space Agency. He holds a doctorate in astronomy and his experience shines through in his writing.

He has an incredibly engaging style that he peppers with just the right amount of scientific jargon to make his settings convincing. He also does an amazing job of bringing seemingly disparate story threads together at the end in ways so obvious in retrospect.

I could go on and on about why I like these books. Instead, I want to talk about one thing that Reynolds does very well. Conflict. Or should I call it fluff? You know those fight scenes that drag on too long or the infiltrations that seem a little too contrived? I know I can’t be the only one, which is why I was so happy when Reynolds chose to fade to black for those scenes that another author might instead drag along for a chapter or two.

That’s not to say that these books don’t have fight scenes or are free of violence, but Reynolds seems to know exactly how much of the fight we need to be shown, and much of the violence in the series takes place between starships. Starships so far apart that a commander will not know if their attack was successful for several hours. In a book like this, conflict is best shown through the thoughts and worries of the commanders rather than the minutia that many authors get stuck in.

Fantastic books. 5/5. Go read.

Animals That Should Have Been Domesticated

Creating fictional animals is hard, but there is another way. Instead of inventing your own animals, just use animals that are dead.

And no, I don’t mean the dead cat that you saw run over in the road. I’m talking about the world’s megafauna. The massive animals that once roamed this world and are now long gone. I know I’m not the only one who has ever looked at a picture of one of those beasts and thought “I wish I could pet that.”

When I see one of those pictures I see a lost opportunity. I see a creature that could have lived alongside humans. Horses and dogs and cats are great, I love them. They have their place in fantasy and I don’t think that they can be replaces. At the same time, why create new fantastic creatures when we can draw on Earth’s past? So here are three extinct animals that I think would have been really cool to have as pets.

Ground Sloths

Modern sloths are cool but I am not sure what they could be used for

Listen, I know that sloths seem useless now. Cute, but useless. But I really think that they are capable of great things. Imagine those claws! Imagine that size! I’m not imagining these things as a mount (but they could be) but imagine how useful those claws would be for diggin or pulling our tree stumps, or how the giant sloths could help to carry heavy loads. A traveling merchant with a ground sloth would be really cool.

Saber Tooth Tigers

I wonder if those teeth could be turned into knives…. Photo from Wikipedia

The decline of megafauna is often linked to the spread of humanity because we tend to kill everything. One thing that may have suffered from the decline of megafauna is the the saber tooth tiger that hunted them.

Now I know, a big cat with teeth that big can be scary, but imagine if we befriended them. They were suited to hunting big things, we were (are) suited to hunting everything. That doesn’t mean we don’t need help. Sure, dogs are great, maybe the greatest, but imagine a giant house cat with giant fangs charging towards your enemy. That beats any dog.

Woolly Rhinos

I’m just saying, one of these would be way scarier than a horse.

Everyone loves a rhino. If you’re like me as a child you only got to learn about the rhinoceroses that are native to far off lands. You might also have been upset to learn that we used to have an animal as ubiquitous as the woolly rhino right here in North America.

If bread in sufficient numbers these animals would have been so much better than horses. They come with horns! Just imagine for a second the rohirrim mounted on rhinos charging into ranks of unprepared orcs.

What extinct animals do you wish were still around today? Let me know in the comments!

If you like content like this and want access to exclusive updates make sure you subscribe to my newsletter. Sign up before 4/15/2021 and you’ll be entered in a giveaway. And don’t forget to check out other posts, like my recent review of the Drop Alt.

Science for SciFi: Peer Review

When a research project reaches completion, the investigators often write up their results in a peer-reviewed journal. Once the investigators decide what journal is most appropriate for their research, they submit their paper, if the editor of the journal decides that the research has merit and is a good fit for the journal, they begin the peer review process.

For many scientists, the peer review process can be stressful and drawn out, sometimes for all parties involved. But the peer review process, despite its faults, is vital to ensuring that honest, quality research gets published.

It’s also likely to be a major source of stress for the scientists in your novel.

There are A LOT of memes about Reviewer 2 out there. Source

Article Anatomy

Each publisher and journal will have its own formatting guidelines. These are the essential bits. Sometimes results and discussion will be a single section and not separate.

Abstract – in science we pack the conclusions into the headline. Abstracts vary in length but are normally about a paragraph. An abstract’s job is to convince someone to read the entire article and to help put what follows into context. Writing an abstract is hard, in just a few sentences you need to explain why the research matters, how it was done, and what conclusions were made.

Introduction – this is (for me) the most fun part of the article to write. The introduction explains the basic principles of an article. An introduction should explain the motivations behind the research and what gap the research aims to fill.

Experimental/Materials and Methods – every journal puts this section in a different place within the article. For someone interested in learning the impact of the research this section is fairly boring, for someone who wants to judge how reliable the data is or replicate certain techniques, this section is essential. Experimental contains a list of what tools and materials were used, who manufactured them, and how they were prepared.

Results- this section explains the collected data in excruciating detail. The data is often supplemented by a variety of graphs and other diagrams.

Discussion – here is where the authors get to explain what the data means. This section is filled with explanation and interpretation.

Conclusion – these are short. Almost as short as the abstract. A conclusion should be short and sweet.

References – any claim that is not common knowledge for the audience or data gained from the research needs to be cited. This might include established experimental techniques, general background information, mathematical formulas, computer code, and so on.

How To Read An Article

How you read an article will depend on what you are trying to get from it. If you are trying to discern the salient points you will probably read the abstract to decide if you care about it. Then maybe the introduction, then the discussion and conclusion.

If you want to explain how the authors reached those conclusions you will spend a lot of time reading the experimental and results sections. You will want to know what they did, understand why, and try and see where the project’s weak points are. This can take a good deal of time and may require multiple readings of a single article.

If you want to know the current state of the field, then a single research article just won’t do. You might find many other sources from the reference list at the end of the article, but you’ll quickly find yourself falling down a rabbit hole. If you are new to a field, you will want to find a review article. A review article is meant to summarize the current state of a given field or subfield and will highlight that field’s important developments. These articles may have hundreds of references.

The Review Process

Once the authors submit a paper, the first thing the editor does is decide whether the article is suitable for their publication. Basically, does it fit the focus of the publication and does it have a large enough impact? Some journals are “high-impact” and some are not. But that is a discussion for another day.

If the paper makes it past this stage the article is sent to a set of reviewers. These reviewers are chosen because they are experts in the field. They are the authors’ “peers” and are likely to have the knowledge needed to evaluate the quality of the research.

These experts comment on the experiments, the data, and may suggest changes that need to be made before the paper is ready for publication. This is where many of the Reviewer 2 memes originate. Authors may often feel that a reviewer’s comments are unreasonable, or that they are trying to manipulate the authors for their own benefit. The good news here is that authors can respond to reviewer comments, and if they can convince the editor that the comments have been addressed then the article can be published.

The key thing to remember is that just because an article has gone through peer review does not mean that it is free of mistakes. A research article is the result of the best possible measurements and analyses that were possible at the time. Peer review means that a small group of experts has decided that the research has merit and that it is free of major flaws.

This doesn’t mean that there are no mistakes, that there is not a larger picture, or that better analysis or measurements won’t be done in the future. A single research paper tells just one small part of a larger journey of discovery.

Emotional Costs

The impact of one single paper is likely to be minuscule, but to the authors, it might well be everything. PI’s (principal investigators) are often established, professors. The other authors, however, are likely students. These students spend years working on a project that might result in just a handful of papers. For these students, the process can be very draining. No matter how “small” the project may be in the grand scheme of things, it has, by the time of publication, been a major part of their life.

For many in academia, publishing is everything. Publishing is how graduate students build a resume. And it’s how many professors achieve tenure. Research activity is frequently measured in publications and grants.

Scenarios

There are a lot of ways to write a scientist’s motivations. But based on what we have just talked about above I will provide a few examples. The examples in this list are for creative purposes only. These are WRITING PROMPTS, not recommendations or endorsements.

  • After years of “publish or perish” the character sees their self-worth only in terms of publications. They frequently overwork themselves and lose sleep in order to make progress.
  • Eager to increase their number of publications, the character divides their research into smaller and smaller chunks to get more papers out. This practice is sometimes called “salami slicing.” It’s frowned upon, but they hope that most observers will only see the publication count and not look much deeper.
  • Desperate to publish in a high-profile journal, the character begins to falsify or omit data. After getting away with it multiple times they think they are safe. Then, several years later, they are found out and their career crumbles around them.
  • The rat race of academia is too much. Fed up with the constant publish or perish mentality, the character decides to take a post at a teaching-focused institution. They publish a paper every few years, but what they really care about are the lives of the students they help shape.

Further Reading

I don’t have any book recomendations about the peer review process. However, peer review and publishing play big roles in the lives of scientists. So here are a couple books where you can learn about the history of science and the people who do it.

Science for SciFi: Poisons

This might seem like a bit of a repeat. After all, we just learned about a few natural weapons, right? Sort of. I talked a bit about how snake venom works, but I think it’s worth our time to learn a bit about toxicology. How do poisons work? How are they administered? Can toxicity be quantified? We’ll get to those answers in a minute. But before we start, let’s get two disclaimers out of the way. First, I am not a doctor and nothing you read here should be considered medical advice. Second, some fields distinguish between toxins and poisons. For the sake of simplicity, I will be using them interchangeably.

How do poisons work? Like we saw with snake venom, poisons work by interfering with the natural processes that happen constantly in your body to keep you alive. If you think about it we are really just a leather sack filled with water and chemical reactions. If anything interferes with those systems then we’re in for a bad time.

Measuring Toxicity

Death is in the dosage. Molecules that we need to sustain life can be toxic if we have too much, and molecules known to cause death might not hurt us at all if we have too little. Determining the amount and duration of exposure that results in toxicity can be tricky, but it’s an important consideration.

Two important considerations are acute versus chronic toxicity. Does the poison kill you immediately (acute), or over time with repeated exposure (chronic)? One measure of toxicity is LD50, often denoted in terms of milligrams per kilogram, which is defined as the median dose that kills 50% of the test population. Chronic exposure is something that workers in many industries need to worry about, but the assassins in your crime novel will be more concerned with acute exposure.

But measuring toxicity can be difficult. After all, it’s hard to find willing human subjects. The easiest way to test potential toxins is to see what they do to cells in a petri dish (in vitro). These experiments can reveal a lot, like the mechanism of toxicity (eg. does it block cell receptors or bind to DNA?) but cells in isolation are a poor model for living systems. Sure, maybe a chemical is toxic to liver cells, but if it never leaves the lungs after being inhaled then its effect may be limited. Large multicellular organisms are more than just individual cells, they are complex systems comprised of many cells with many functions. Toxins may then target a specific organ or grouping or organs depending on how the body processes them.

The best way to test toxicity is to use live animal models, but for obvious reasons, not everyone has the time, resources, or inclination to perform those tests.

How Bad Are Heavy Metals?

Mercury and lead are often thought of as extremely toxic, and for good reason, there are a great deal of environmental and health risks that arise from heavy metal pollution. However, just because something contains a heavy metal does not automatically make it dangerous.

The properties of metallic compounds vary greatly depending on their structure, makeup, and reactivity. For example, heavy metal chlorides may be toxic, but heavy metal oxides may be considerably less so.

Water solubility is a big factor here. If a compound cannot dissolve in water it’s going to have a hard time reaching target systems in the human body where it can do the most damage. But factors such as pH and any reactions the metals might undergo once inside the body can also play a role.

Predicting Toxicity

By now it should be clear that toxicity is hard to predict. It’s not just a matter of what a molecule contains, but what reactions that molecule undergoes inside the body which determines how dangerous it is and what kinds of damage it inflicts.

This is a problem for researchers because not all of the chemicals found within a lab will have been fully studied in terms of toxicity. Because of this, it’s easier to assume everything is dangerous and behave accordingly. That said, there are a few things that can be done to predict a molecule’s hazardous effects.

After a few years in the field, most chemists can intuit the reactivity of molecules based on their structure.

  1. Reactions that occur once released into the environment.
  2. Reactions that occur within biological systems.

For these reasons, predicting toxicity is not as straightforward as one might think, although knowledge of structure and reactivity can give us some clues. There have even been attempts to take known reactivity data, feed it into computers, and generate toxicity predictions. These efforts are unfortunately hampered by a general lack of data in many cases and the number of environmental and chemical variables that need to be considered. Even so, progress in this area is being made.

Famous Toxins

Arsenic – a poison that was favored by Agatha Christie, rat catchers, and stylists alike. Arsenic and arsenic-containing compounds have found many uses over the years as rat poisons, pigments, medicines, and more. Because of these many uses arsenic was once easy to come by and could be bought at many pharmacies. The really dangerous form of arsenic is arsenic oxides. Once inside the body, it disrupts the production of ATP, the molecule that our bodies use for fuel. Arsenic (III) oxides are similar in structure to the phosphates that our bodies use to make ATP and so our bodies try to use them instead. Without a regular supply of energy, cell death soon follows.

Capsaicin – do you really need to know why peppers feel hot on our tongues? Do you care? Maybe peppers won’t drop you dead, but the mechanism is fascinating and very useful to science fiction authors. Capsaicin targets neurons, specifically the vanilloid receptor. In practice, they cause the same sensation as heat. So they hurt, but they could hurt more if controlled by a mad scientist. This is actually my favorite toxin here, because in real life it is relatively harmless, but could be used by a writer in a lot of interesting ways. An alien plant for example, could have a much nastier variety of capsaicin for explorers to stumble upon.

Cyanide-cyanide is a classic. No spy would be caught dead without their cyanide capsule. Like arsenic, cyanide disrupts the production of ATP. In this case, however, it functions as an inhibitor that prevents the enzyme cytochrome c oxidase from doing its part in the ATP cycle. It should be noted, that in this case when we say cyanide we actually mean hydrogen cyanide (HCN). Cyano groups (CN) are common in many areas of chemistry, and hydrogen cyanide has many industrial uses.

Sarin – famous as a chemical warfare agent and a neurotoxin. Sarin acts quickly and can strike you dead in under ten minutes. Sarin is not too different from some of the snake venom we looked at a while back. Like our example there, Sarin works by inhibiting signals sent by nerve cells, but the mechanism is different. The key to sarin’s effectiveness is the neurotransmitter acetylcholine. Sarin permanently binds to receptors and prevents muscle cells from correctly interpreting the acetylcholine signal. The victim’s muscles are then unable to process acetylcholine, hindering their movement, and the victim dies from asphyxiation soon after. Sarin is an organophosphorus chemical that evaporates quickly and is incredibly deadly.

Narrative Uses

Agatha Christie was famous for using accurate portrayals of real poisons in her mystery novels, so much so that an entire book was written about it. By doing this she was able to give her readers the chance to deduce the murderer and the means of murder before she revealed it. The clues were all there for anyone who wanted to puzzle it out.

Whatsmore, knowing what a poison is and what its other uses help to build more plausibility into your story. A worker at a chemical plant might have ample access to hydrogen cyanide, just like a pharmacist in Victorian England would have no trouble sourcing arsenic on the down-low. And of course, for you writers of science fiction, knowing about the mechanisms and effects of real-world poisons allow you to ground your fictional toxins in real science.

Sources

A Is For Arsenic: The Poisons of Agatha Christie. Kathryn Harkup.

Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology. Johannes A. H. Schwobel et al. Chemical Reviews. American Chemical Society. 2011.

Toxicity of Metal Compounds: Knowledge and Myths. Ksenia S. Egorova and Valentine P. Ananikov. Organometallics. American Chemical Society. 2017.

Science for SciFi: Superconductors

transmission tower under gray sky
Photo by Pok Rie on Pexels.com

A room-temperature super conductor would revolutionize the energy industry and how we build electrical devices. But what is a superconductor? Why do we care whether it works at room temperature or not?

In short, a superconductor is a material that can conduct electricity without resistance.

Resistance is an important, and useful quality of many materials. Some things are just less conductive than others. Obviously for wires we want a low resistance, but for other components a higher resistance may be required. It’s the context and the application that mattes.

And there are some really cool applications for superconductors. But the equipment required to keep them at temperatures cold enough to maintain their superconductivity limits their use. But they have such potential!

Let’s get one thing out of the way first. When someone says “low-temperature superconductor” they mean superconductors that become superconductors at liquid helium temperatures. A “high-temperature superconductor” works at liquid nitrogen temperatures. The temperature at which a conductor becomes a superconductor is called its critical temperature.

So how do they work?

Gui et al. described superconductivity as “…a competing balance between stable geometric structures and unstable electronic structures.”1

A greatly simplified explanation of how superconductors work is that they enable the formation of Cooper pairs. Cooper pairs are pairs of electrons with opposite spins and momentum. These electrons are so strongly pairs that they move through a superconductor without resistance as their interactions with the atoms they encounter are too weak to break them apart.

Researchers seek to create new superconductors by searching for new combinations and arrangements of atoms that result in improved superconductors.

The geometry of a molecule plays a massive role in it’s properties, and this extends to . This is because bonds between atoms are made by paired electrons, and pairs so electrons repel other pairs of electrons. Electronegativity, bond angle and length can thus influence the energy level of electrons around the nucleus and in the crystal structures that the atoms and molecule are a part of.

If we ever find a naturally occurring superconductor on another planet it will probably be an alloy or crystal structure caused by local conditions. We might for example find a rare allotrope of a previously discovered metal. So rather than mining it like in James Cameron’s movie about blue people, we would probably find a way to make it ourselves before too long.

Superconductors are already used to make the magnets in MRI/NMR machines where stronger magnets provide higher levels of resolution. They are also used to build the transistors used in experimental computers, and to build some maglev trains and superconducting power lines. However, as long as specialized cooling systems are required for these applications, we will not be able to reap the full benefits that superconductivity offers.

Once achieved, room-temperature super conductors would change everything, and could enable many of the technologies in your setting’s space ships. Perhaps the star drive is built around a superconducting warp coil, and in order to conserve reaction mass the ship is wired with superconducting cables, and superconducting antennas are used to pick up weak signals sent from distant stars.

  1. “Chemistry in Superconductors” 2021. Chemical Reviews. American chemical Society.

Planet_Insert Name

I’ve been working on a new setting. It’s a grimdark science fantasy setting inspired by Frank Herbert’s Dune. I will not offer specifics at this time.

But I have had ideas for a planet. A planet that is relatively young and dominated by volcanoes and magma flows. This planet is called Corsan.

The humans on this planet care most about the valuable ores that are continuously pushed to the surface by the constant eruptions. The ruling class live in large citadels, anchored to the planet’s crush by deep pylons.

From their citadels they reap the profits of an army of slave and convict workers who are forced to work the dangerous lava fields. These workers are in turn watched over by an army of cloned janissaries.

Five years from now I will be free.

Five years from now I will walk into the Overseer’s office.

Five years from now I will receive my pittance.

Five years from now I will leave.

Five years from now I will go somewhere cold.

Five years from now I will be free.

Miner 44-0372 died in a sudden pyroclastic event 4 days after writing this.

Constant eruptions make mining easy, and this planet excels in the production of weapons and ships. But this planet’s population remains low. Too low to risk open war.

What scares the rest of the Empire is this world’s willingness to depend on clone soldiers.

Clone is not the right word, but the best word. The Citadels do not just grow soldiers. They grow servants and maids and gardeners and whatever else they need. These clones are very expensive, which is why House Gravin refuses to use clones in the mines.

To do this they do not draw on any one genome. They pick and choose from the specimens that enter their prisons. Because of this their clones are not true clones. Their clones are amalgams of those who pass through. From one batch to the next there are subtle differences introduced by the engineers. But no matter the differences all are unflinchingly loyal to House Gravin.

The most concerning part of this is therefor not the number of clone soldiers, but the potential of the clone soldiers if House Gravin ever decides to grow more.

So why does this planet matter?

Well, it doesn’t. Not in intrinsic worth at least. House Gravin buys criminals from other houses. These criminals are then set to work in House Gravin’s mine for a much shorter term than they would have served otherwise. But the real value is in the genes.

House Gracin depends on cloned soldiers. Something that most other houses would not want to risk. By bringing in greater amounts of genetic stock the House’s gene wizards have more choices to choose from.

There are some places on this planet that remain free. Escaped prisoners and occasional escaped clones have found refuge in the poles of the planet. In these relatively cool areas they have made their home in the empty magma tubes. They sell ore to smugglers and hunt native insectoid lifeforms for sustenance. Their lives are hard, but they live their lives the way they want to.

House Gravin is brutal, but I think I could imagine brutal-er. This setting is still in its early phases, and there is a lot of room to grow. What kind of house would you imagine? Let me know on twitter @expyblg.

Science for SciFi: Natural Weapons

Picture this. You’re an imperial guardsman in service to the Imperium of Mankind and the Tyranids have come knocking. They’re coming for you now. As you stand ready in your trench, lasgun in hand you wonder; what are they made of?

There are a few options.

Chitin

close up of lobster underwater
Photo by Roger Brown on Pexels.com

Sugars are a lot stronger than they get credit for. When you think of sugar you might be thinking of the fructose and sucrose in our food. These are all longer chains of glucose, a small sugar molecule that is used by many living things as fuel and as an important building material. Even cellulose is a sugar.

And chitin is, you guessed it, a sugar.

It might seem strange to think that the white powder on your donut can be a part of the same material found in insect exoskeletons. But it’s really not that unusual.

Chitin is a polymer, more specifically a polysaccharide. It’s made of many smaller subunits of modified glucose. Along each unit is weak, but together they form long chains capable of aggregating to form materials that are much stronger than the individual parts.

Chitin currently has multiple uses in agriculture and industry. It can be used to make edible films and strengthen paper. Or it can be used by farmers to trigger immune responses in plants to protect against insects. There are also potential applications for chitin in medicine, biodegradable plastics, and building on Mars.

Now what if you live on a planet without trees and other plants? Maybe the natives consist of giant armored insects and walking mushrooms. What will you wear? You could kill one of the insects and wear it’s shell, but I like to think that you would be more creative. After a few years living on the planet you and your people might find a way to take the chitin plates of the local insects and spin them into durable fibers for making clothes and all sorts of tools.

Keratin

brown rhinoceros
Photo by Anthony on Pexels.com

If you read the first post in this series you’ll remember that proteins are how living things do stuff. Your hair and nails? That’s protein. You might think that because you can cut both with scissors that keratin is weak.

You’d be wrong.

Others in the animal kingdom put their keratin to much better use. Scales are made of keratin and so are claws and horns.

There are two kinds of keratin, alpha and beta. Keratin is a helical protein, it forms long strange and curls around itself. Alpha and beta refer to the direction of the curl. Mammals and certain fish have alpha keratin, reptiles and others have beta.

One thing that makes keratin especially strong is the disulfide bonds between the keratin strands. Bonds like this between polymer strands is called cross-linking. Besides being used in our bodies, cross-linking is often employed by polymer chemists to create strong and resilient materials.

Venom

photo of snake
Photo by Jan Kopřiva on Pexels.com

Venom is used by many animals for defence and attack, and you do not want to be on the receiving end. There are three ways that venom can inflict pain; it can kill cells, it can target nerves, or it can target muscles.

Obviously there are many different kinds of venom. Not all will kill humans, at least not without a lot of it. But there are some horrifying ways that they can kill a human if they do. Venom can kill cells, target the nervous systems, or target muscles.

According to “Snake venom components and their applications in biomedicine” by Koh et al., neurotoxins are the most studied class of snake venoms. One of these neurotoxins are the alpha-neurotoxins which specifically target nicotine acetylcoline receptors.

Receptors are specific proteins on the outside of cells designed bind to specific chemicals. You can think of receptors as sensors on the outside of a cell and they are how cells communicate through chemical signals. By blocking these receptors, alpha-neurotoxins prevent the normal function of these nerve cells, and death follows soon after.

You might be surprised to know that while these toxins are deadly they also have uses in healing. Receptors are incredibly important in biology. It’s hard to understate just how important these are. Because these toxins are so specific to certain receptors they are very useful for for figuring out what those receptors do. For example, in biochemical research it is common to block a receptor and see what happens to the cells after they have been deprived of it’s use. This data then yields important clues to the function of that receptor.

But there’s more. When used in the right dose, these neurotoxins can reduce inflammation and pain. So these toxins can not only cause pain, but show us how to negate them. If they are used carefully.

Conclusion

Now let’s return to you, the guardsman. You’re stuck in your trench. First come the small beasts, ferrocious dog-like things. They’re soft and they fall easily to your lasguns but there are too many of them. They dive into your trench and tear your friends apart with their keratin claws. You think one is coming for you, but before it can sink it’s claws into you feel yourself picked up by a pair of chitinous claws.

You look up. Above you is gaping maw flanked by two horrible mandibles. A pointed tongue flicks out and pierces your skin. Your blood congeals and turns to jelly and slowly every fades as you are pulled into it’s jaw…

Science for SciFi: Jargon

a man doing an experiment

Photo by Artem Podrez on Pexels.com

Writers want their smart characters to sound smart. Making a character sound smart sounds hard. But really it just requires a surface-level understanding of the topics and an understanding of keywords.

As a scientist (a chemist) and a writer, I understand this challenge well. So I thought I would help by explaining some basic concepts, keywords, and tools used by scientists. This will be the first in a series of posts highlighting interesting parts of science (mainly chemistry) for writers looking to beef up their technobabble.

My own experience and knowledge of chemistry has biased much of this. My fellow scientists who are reading this and feel their favorite topics have been ignored can resolve this grievance by submitting a guest post or leaving a comment.

The “Three” Branches of Science

There are three basic branches of science, but each of them has many subfields and specialties each with it’s own quirks, norms, and standards. Do not mistake these fields as exclusive. Each field may have it’s own focus but in truth the are better at denoting specialties than limits. The lines that separate these fields are becoming blurrier as time goes on and science becomes increasingly interdisciplinary.

Physics – the “most fundamental science” according to Wikipedia. Physics aims to study force, energy, and motion to understand the fundamental laws of the universe.

Chemistry – the “central science.” Chemistry fills a space between physics and biology. Sometimes it is hard to determine where one begins and the other ends. In general, chemistry is concerned with reactions between different chemicals, or analysis of chemicals and their behaviors.

Biology – this field is concerned with the study of living things. Many think of counting fruit flies and dissecting frogs when they think of biology. Much of modern biology shares techniques with biochemistry as scientists have tried to pull apart the secrets of smaller and smaller systems.

Common Vocabulary

Accurate – often confused with precise. To say that something is accurate assumes that there is a “true” value.

Aliquot – a very specific portion taken from a larger sample of liquid sample.

Amino Acids – amino acids are the building blocks of proteins. There are twenty common amino acids and all share some common structural features.

Atoms – atoms consist of a nucleus containing protons and neutrons, and are surrounded by a collection of “orbitals” where the atom’s electrons are found. An atom is composed primarily of empty space.

Atomic Orbitals – regions of space around an atom where an electron is likely to be. Orbitals that farther away from the nucleus contain higher energy electrons.

Bacteria – ubiquitous and mostly harmless microorganisms. Normally we only care about bacteria when we are sick. Bacteria inside our bodies perform many vital functions that are not completely understood.

microscopic shot of a virus
Photo by CDC on Pexels.com

Deoxyribonucleic Acid – nature’s data storage. DNA tells cells how to build the proteins that keep them functioning.

Elements – an element is a pure substance that contains only one type of atom (not counting isotopes). Elements can now be created artificially. Many of these are unstable and decay quickly, but some researchers have speculated about a potential “island of stability” hiding among the undiscovered high-mass artificial elements.

Evolution – the theory of evolution is a theory, as far too many would like to say. You can read more about that later. But it’s worth remembered that evolution is a fact. If you can’t wait a few million years you can watch it happen in a petri dish. The Theory of Evolution is simply out best explanation of how it works. Another vital thing to remember is that evolution has no pre-determined direction. “Good enough” is enough for nature.

Functional Groups – a segment of a molecule that determines is properties in a reaction. Examples of functional groups include hydroxyl groups, carbonyls, and much more.

Hypothesis – a hypothesis is an educated guess. A scientist takes known information and uses this information to predict what will happen in their experiments.

Inorganic Molecules – defined simply as “not organic,” inorganic molecules can contain both metals and non-metals.

Ions – ions are atoms that have lost or gained electrons and have a positive or negative charge as a result. Paired positive and negative ions form ionic salts.

Isotopes – isotopes are rarer forms of elements that differ in the number of neutrons contained in their nucleus. Natural samples contain a mix of isotopes in different rations depending on purity. Isotopes will vary in atomic mass and stability. These properties make isotopes useful in many applications.

Law – a law describes a known truth about the universe. Theories explain how laws work, laws do not change when a new theory is devised.

Light – both a wave and a particle. Light is a form of electromagnetic radiation. Light interacts with matter in a myriad of interesting ways. Scientists often take advantage of these interactions to study properties of matter that are invisible to the naked eye.

Molecules – molecules are built from atoms. Most things we interact with are some kind of molecule. Bonds within molecules are the result of interactions between electrons and atomic orbitals.

crop chemist holding in hands molecule model
Photo by RF._.studio on Pexels.com

Organic Molecules – the components of gasoline are organic. Organic molecules make up all living things on earth and many dead or inert things as well. Carbon and hydrogen are the primary elements that make up organic molecules.

Peer Review – When a scientists completes a project they write up the results and submit it to a relevant journal in their field. The editor at that journal decides whether the topic is relevant to their publication. If it is, they send the article to reviewers, who are normally other experts in the field. These reviewers look at the article, comment on its merit, and specify what in the article needs to be changed or corrected. An article might go through multiple rounds of corrections before the reviewers decide it is worthy of publication.

Precise – often confused with accurate. Precision is about consistency. Repeated measurements of similar value are said to be precise. We can’t always expect to be accurate, so we aim to be precise instead.

Precipitate – a precipitate is a solid that forms out of a solution.

Proteins – these are how living cells do things. Proteins serve as structural elements, transport molecules, catalysts, and many other things.

Polymers – large chains of molecules constructed from smaller subunits called monomers. Polymers have many useful properties. Kevlar, nylon, spider silk, cellulose, and all plastics are polymers.

Redox Reactions – redox reactions are a huge part of chemistry and biology. The word redox comes from the two related reactions, reduction and oxidation, that are part of every redox system. A useful mnemonic is LEO the lion says GER. Lose Electrons = Oxidation. Gain Electrons = Reduction.

Ribonucleic Acid – DNA’s less popular cousin. RNA carries out several functions inside of a cell. For example, mRNA carries instructions from the nucleus to the ribosome.

Solutions – solutions are everywhere. Solutions have two parts; the solute and the solvent. The solute is a solid that dissolves into a liquid, the solvent. A good rule of thumb when making solutions is that like dissolves like. Polar compounds dissolve in polar solvents, nonpolar compounds dissolve in nonpolar solvents.

Theory – these explain how a particular phenomenon works and why.

Viruses – bits of DNA or RNA bundled up in a shell of proteins and sometimes lipids. Viruses can only survive for a short time outside of a host and reproduce by hijacking the machinery inside of host cells to make more of themselves.

Qualitative – qualitative measurements are somewhat vague. They care about quantities like bigger, smaller, lesser, greater, and so on.

Quantitative – quantitative measurements are exact. They yield a specific number and should have all kinds of statistical analysis to go alongside them.

Quantum – science fiction writers frequently abuse this word. Which is understandable, many trained and experience scientists struggle to grapple with quantum physics because of how unintuitive it is. At this scale the classical physics described by Newton is no longer adequate to model what we observe. So we have a separate branch of physics called quantum physics to describe the behavior of particles on the subatomic scale. Quantum physics is based on probabilities and energy. We can’t nail down the precise location of an electron, but we can determine where it is most likely to be.

Common Laboratory Tools

Balances – many people will recognize these as scales. Many classrooms still used old fashioned balances not unlike the scales found in a doctor’s office. Modern laboratory balances are electronic and can measure mass with a high degree of accuracy.

Dewar – a vacuum insulated container that can be filled with liquid nitrogen, dry ice, or ice water. A dewar is useful for a keeping a sample cold for extended periods.

Gloves – there are two reasons to wear gloves. To protect the scientist from the sample, or to protect the sample from the scientist. The same properties that make many chemicals useful also make them dangerous to human life. Just like many bacteria and viruses that are of interest to scientists are also dangerous. In other cases it is the scientist who could damage the sample. Humans are full of DNA, proteins, and all sorts of other things that could contaminate biological and forensic samples. Gloves are an important part of this. Another important thing to remember about gloves is that the material matters. Nitrile gloves are probably the most common but not all chemicals are compatible with nitrile. Some chemicals may breakdown nitrile or soak right through. Gloves made of other materials are available for those instances.

crop faceless person in outerwear putting on latex gloves
Photo by Laura James on Pexels.com

Glove Boxes – for samples that must be rigorously protected from oxygen, or for samples that may be dangerous to the user, glove boxes are the best option. Glove boxes are exactly what the sound like. A large box, with a glass window and a pair of large rubber gloves. The inside of a glove box is filled with an inert gas like argon or nitrogen.

Heating Mantle – chemists use heating mantles to drive chemical reactions by converting electricity into heat. Heating mantles are controlled by a variac that regulates the supplied voltage. Some heating mantles have a built-in variac, but in most cases the variac is a separate component. Heating mantles are often placed on top of magnetic stir plates.

Hot Plates/Stir Plates – hot plates are another option for heating solutions and materials in lab. Many have a built-in magnetic stirring function that can make a magnetic stir bar inside the reaction vessel spin.

Mortar and Pestle – a frequent component of imagined alchemy labs. Mortar’s and pestles remain useful tools in chemistry and biology labs.

Pipettes – pipettes transfer small volumes of liquids. Some pipettes are carefully calibrated, others are little more than fancy eye droppers.

crop chemist using modern equipment during work process
I’m not sure what they’re trying to do in this photo. I have no idea why anyone would clamp a volumetric flask like that. Or why they would use an open flame instead of a hot plate (flammable vapors make an open flame dangerous in many labs). Still, it’s a good illustration of a pasteur pipette being used to add approximate amounts of a certain chemical.

Photo by RF._.studio on Pexels.com

Spatulas – spatulas are used to move solid chemicals from one place to the other. For example, from the bottle to a balance or from a weigh boat to a reaction flask. Metal spatulas will be common to most undergraduate, but some labs use disposable plastic spatulas.

Syringes – syringes are incredible useful. Biologists may find many uses for syringes in drawing blood or injecting drugs. Syringes are used to work on air free reactions. Syringes are fantastic for piercing septums and adding or subtracting aliquots with minimal interference from surrounding oxygen.

Common Laboratory Instruments and Techniques

Some instruments are available from commercial sources for thousands or millions of dollars. Others are so specific that they need to be custom built by the user.

Centrifugation – centrifuges separate sample components by density. The centrifugal force causes high density sample components to move outward and form layers.

crop unrecognizable cosmetologist taking test tube out of centrifuge for plasma in modern clinic
Photo by Gustavo Fring on Pexels.com

Chromatography – chromatography separates sample components. All chromatography involves a mobile phase and a stationary phase. The mobile phase carries the sample through the stationary phase. As the sample interacts with the solid phase it becomes separated into its components. Many techniques pair chromatography with another analytical technique such a spectroscopy or mass spectrometry.

Electrophoresis – electrophoresis describes the movement of charged particles in an electric field. Multiple separation techniques use electrophoresis to separate sample components such as gel electrophoresis or capillary electrophoresis.

Fluorescence Spectroscopy – some molecules absorb light at one wavelength and emit light at another. Fluorescence is useful in many instances and especially in biology and biochemistry. The strong signal given by fluorescence makes it easy to distinguish from background noise. This is its main advantage over absorbance spectroscopy.

Infrared Spectroscopy (IR) -heat is transmitted through infrared waves. When those waves hit a molecule, parts of that molecule vibrate in characteristic ways. These vibrations are like finger prints for different functional groups.

Nuclear Magnetic Resonance Spectroscopy (NMR) – probably one of the most useful instruments in modern chemistry. Nuclear Magnetic Resonance takes advantage of the “spin” that is an inherent property of subatomic molecules like protons and electrons. Basically they behave like tiny magnets. An individual spin has a value of either +1 or -1 and when opposite spins are paired these spins cancel each other. Certain isotopes of common elements have an odd number of subatomic particles in their nucleus resulting in a non-zero spin. NMR works by placing a sample inside of a magnetic field. The unpaired spins then align with the field and the instrument hits the sample with radio waves of a specific frequency. The unpaired spins then flip as they absorb the energy from the radio waves and release energy as they return to their original orientation. The environment surrounding each unpaired spin affects the signal they emit, allowing us to determine the structure of molecules. Proton and Carbon 13 NMR are most common, but isotopes of Oxygen, Fluorine, Phosphorus, and more can also be targeted. Special, expensive solvents have to be used for liquid samples to avoid interferance. The same technology is also used in MRI except in this case the density of spins is used rather than the individual behavior of those spins.

person holding silver round coins
Photo by Anna Shvets on Pexels.com

Mass Spectrometry (MS) – another incredibly useful instrument in modern science. Mass spectrometry begins by injecting a sample, ionizing it, and shooting it at a charged plate. This results in peaks that show us the mass-to-charge ratio. Mass spectrometry can do a lot. So much that mass spectrometry research almost constitutes its own subfield, but it is useful to all other niches of chemistry.

Ultraviolent/Visible Spectroscopy (UV/Vis) – UV/Vis instruments are used to study a sample’s interactions with light in the visible and ultraviolet range. There are two basic types of readings we can get from this: absorbance and transmission. Absorbance is how much light the sample absorbs, transmission is how much light passes through the sample. Accurate readings depend on knowing the emission profile of the light source. Basic instruments assume that this profile is constant, more sophisticated instruments take constant readings of the light source. Interference in these experiments may come from fluorescence in the sample or form surrounding light sources.

X-Ray Spectroscopy – of all the electromagnetic waves X-Rays contain the most energy and are the most destructive. These high energy rays frequently ignore anything outside the nucleus. Various forms of X-Ray spectroscopy are used to determine the structures of solid crystals and identifying the elements and isotopes in a sample.

NATO Forces in the Independence System

Awhile back I posted about a system named Independence, a part of my retro-scifi setting Red Suns. Independence is important because one of it’s planets, Franklin, is capable of supporting human life.

Because planets like this are so rare, the system is coveted by many factions, several of which maintain outposts in the system and two; NATO and the Neo-SOVIET have agreed to share Franklin. The relations between these two factions are often tense and both sides have dedicated considerable resources to securing their interests in the system.

This is the first of several posts where I provide an overview of the ships, people, and places of the Independence System. Beginning with an overview of NATO military assets in the system.

Ship Weapons

Rotating rings are great for providing consistent gravity but are incredibly vulnerable in combat. For this reason most frontline combat ships are built without rings. “Gravity” is provide by constant acceleration and crew have to deal with frequent shifts in acceleration and orientation.

NATO ship design hides most weapons emplacements inside armored bulbs. Everything from anti-missile counter measures to missile chutes are enclosed in armored bulbs that only open during combat.

These autocannons, suitable only for close-range combat or intercepting missiles, are a vital part of every ship’s defenses. Most combat however, is done with missiles at extreme ranges.

These missiles can carry a variety of payloads good for everything from orbital bombardment to anti-ship slog fests. The one pictured here is a generic load, but NATO armorers are more than capable of switching warheads out at a moment’s notice.

Missiles

Siegfried Class Battleship

The newest, most advanced ship in the NATO fleet, and only a handful are currently available. It takes over a decade to finalize the design of a new battleship, and years more before new ships are fully distributed in all the systems where NATO has interests. The Independence system has an unusually high concentration of these new battleships. Equipped with new, rapid launch missile silos and state-of-the-art target tracking. A Siegfried can make short work of most ships.

Siegfrieds carry close to 2000 personnel, including enough dropships and marines to take over a small surface settlement or large space station. Each ship is a self-contained city. NATO spacers compete fiercely for a posting on a Siegfried because they know that they will spend years, or even decades on that ship and a Siegfried is one of the safest, most comfortable ships to be on in any fleet.

Challenger Class Battleship

There are a bit smaller than the Siegfrieds. Let’s say a crew of about 1000.

Somewhat older than the Siegfrieds but by no means out dated. The armament on modern retrofitted Challengers is similar in almost all ways to a new Siegfried. The main differences in armament come from a less sophisticated guidance computer and a set of four drive cannons mounted at the top of the ship.

These drive cannons fire huge projectiles at enemy ships and moons in medium-range confrontations. These cannons require a dedicated reactor and are placed away from the main hull to increase their field of fire. At the time of the ship’s design it was thought that these cannons would be a part of the ship’s primary armament. Technology had other plans. As guidance computers and targeting systems advanced it became more and more practical to engage enemies at extreme range. Despite this, the Challengers remain competent warships.

Recently, several of the Challengers in the Independence system have been given further refits that have improved their guidance computers. Engineers expect to see a far greater degree of accuracy from the drive cannons as a result. This has not yet been tested in combat conditions.

Marshal Class Destroyer

This is the smallest warship that NATO is likely to assign to long-term missions. Marshal Class Destroyers are often seen far away from NATO systems.

In locales such as the Independence System the Marshal Clase Destroyers are commonplace due to the buildup of forces. They are frequently seen escorting larger ships or leading customs patrols.

Marshal Class Destroyers carry enough firepower to hold their own in a fight and carry multiple Pioneer Class Dropships. Enough to perform small boarding actions and land marines on a surface.

Multi-Vector Attack Unit (MVAU)

Outside of atmosphere fighters are uncommon. The smallest combat craft operated by NATO is the MVAU, a broad class of small vessels crewed by between two and five crew.

MVAUs are an important part of the larger fleet, but their pilots must be carefully selected, as their positions require them to spend many weeks or even months alone.

MVAUs are mainly valued for their ability to go relatively unnoticed. Their small profile makes them difficult to distinguish from the vastness of space and they often go for long periods in a “dormant” state.

In combat MVAUs are limited. Their main armament consists of projectile weapons, useful for intercepting missiles or attacking unsuspecting targets. An MVAU may carry one or two missiles but for the most part are considered the outermost part of a fleet’s defensive screen.

Pioneer Class Dropship

Large shuttles that glide to a safe landing are preferred for ground operations. But not all planets have suitable atmospheres or are safe for shuttles with such drawn out atmospheric trajectories.

Dropships can carry many tons of supplies, or about forty marines, on a meteoric trajectory towards a planets surface. It’s fall is only arrested at the last moment by a set of powerful maneuvering thrusters.

Ground Forces

Forces stationed on Franklin’s surface have the luxury of not needing to carry bulky life support systems and armored exoskeletons. But they do have to content with the possibility of protracted surface combat.

Because Franklin is capable of naturally supporting human life the surface is worth preserving to both sides. This means that large scale bombardments are unlikely and the soldiers stationed there will have to endure a protracted ground campaign if war breaks out.

NATO soldiers on Franklin are equipped with a stripped down version of more standard armor kits painted in shades of white and grey to blend in with the chalky off-white gravel and stone that covers the planet. For the harsh, dry winters a mask with breathing filters also suitable for protection against chemical warfare agents is supplied to each soldier and worn as needed. These masks offer protection from the massive storms that sweep across the surface each winter and pummel victims with showers of dust, gravel, and ice. Also useful in the winter is a bundle of heating circuits incorporated into the uniform that when activated can help to keep a soldier’s core temperatures up.

Most soldiers carry the same service rifle used on other planets and in vacuum. These rifles are deadly, but are mostly small caliber weapons designed to allow soldiers to carry enough ammunition as possible.

For support, ground troops have access to a selection of armored vehicles, all built in local factories. Most of these vehicles are hover craft or have extremely wide treads into order to navigate the mud slurries that cover much of the surface during the wet season.